115kV / 34.5kV Solar Power Plant/Substation Design Project

Team sdmay19-26

Tam Nguyen, Nur Shuazlan, Katayi Katanga, Yao Jiang Cheah, Chufu Zhou

Advisor: Dr. Ajjarapu Client: Black & Veatch

http://sdmay19-26.sd.ece.iastate.edu/

Safety Moment: Elevator Safety

Do:

- Hold handrail, stay away from door
- Use alarm button
- Stay calm + Stay stuck in elevator

Don't:

- Use in event of fire
- Get on if overcrowded
- Engage in horseplay
- Rest on/push someone against doors

Black & Veatch Information

- A global engineering, construction and consulting company which specializes in infrastructure development for power, oil and gas, water, telecommunications, government, mining, and banking and finance markets.
- The largest majority employee-owned company in the U.S, and is ranked by Forbes as one of the largest privately owned companies.
- A large amount of its revenues comes from power division.

BLACK & VEATCH

Problem Statement

Problem:

- Provide clean energy for a grid shifting towards renewables to decrease its dependence on fossil fuels
- Solution:
- Design a 60 MW solar plant that feeds a 115 kV/34.5kV substation

System Design

Conceptual Sketch

System Block Diagram

Functional Requirements

- Solar farm parameters
 - DC Voltage: 1000 V
 - Inverter: Eaton 1666kW
 - Panel: Hanwha 325W
 - ILR: 1.30
 - Fixed rack system
- Project scope document
- NEC requirements
- IEEE requirements

Non-Functional Requirements

- Location
- Cost effectiveness
- Man-hour budget

Potential Risks and Mitigation

Component defects (high risk)
Test components before use

Detailed Design

2////////

Design Approach

- 1. Scout several locations and evaluate them based on requirements
- 2. Perform a series of calculations to determine solar parameters
- Create layout design of solar power plant based on parameters and ensure design meets NEC requirements
- Create substation protection & controls schematics based on project scope document
- 5. Perform grounding calculations based on IEEE document

Market and Literature Survey of Similar Projects

MISO North Star Solar Project 100 MW capacity:

- Location in Saint Paul, MN
- 100 MW of solar PV capacity(440,000 solar panels)
- Approximately 800 acres of agricultural land
- Single axis tracking technology to maximize production
- Grid connection at the Chisago County substation 115kV

Location Decision

Functional Decomposition

8	Component	Function	Input	Output
	Solar Modules	Convert sunlight into DC power	Sunlight	DC power
3	Combiner Boxes	Combine the currents before sending it to the inverter	Current from string	Combined currents
	Inverters	Convert DC voltage to AC voltage	DC voltage from array	AC voltage
	Transformers in Inverter Skids	Step-up the voltage	Voltage from inverter	Voltage proportional to input voltage that goes to the feeders
	Transformer in Substation	Step-up the voltage	Voltage from feeders	Voltage proportional to input voltage that goes to the grid
	Relays	Measure the current in a line	Current in a line	Signal to circuit breaker
	Circuit Breaker	Protects circuit from damage caused by excess current from an overload or short circuit	Signals from relays	Disconnect faulted lines
	Communication Devices	Allows communication between substation equipment and SCADA	Signals from different substation equipment	Signals to SCADA

Resource Requirements

Solar Power Plant

- Equipment:
 - 238,032 solar panels
 - 792 combiner boxes
 - 36 inverters
 - 36 step-up transformers
- 244 acres of land
 - We found a 560-acre land for sale for \$195,000
- NEC document
- Software:
 - AutoCAD
 - Microsoft Excel
 - NREL SAM

Substation

- Equipment:
 - Circuit breakers
 - Relays
 - Rigid bus
 - Steel + conductors
 - Concrete foundation
 - Communication devices
 - Transformer
- IEEE std 80-2000
- Software:
 - AutoCAD
 - Microsoft Excel

System Analysis

- Array parameter calculations
 - Determined number of components and verified the voltage and power of the system
- Voltage drop calculations
 - Carried out conductor sizing by analyzing the currents in the plant at different points
- Substation grounding grid calculations
 - Determined grounding parameters to ensure step/touch voltages were less than the tolerable step/touch

Phase 1: Solar Plant Design

Single Rack Layout

Single Rack Layout: 2x19 Solar Panels

Based on: Desired string voltage: 1000 VDC (Actual 972 V)

Voc, Isc of panels Location min. Temp. to calculate corrected Voc Single Array Layout

Based on: Single rack layout Desired ILR of 1.3 (Actual 1.29) Tilt angle: 29.7 degrees Sufficient row space to prevent shading losses of solar panels

	Combiner Box								
	Solar Rack								
	Inverter .								
	Jumper Cable								
	Rack Harness								
	Feeder Cable								

Rack harness: solar panels in a rack

Jumper cables: racks in a row to the combiner boxes

Feeder cables: combiner boxes to the inverter

Solar Plant Layout: 36 Arrays, 36 Inverters

Solar Plant Layout

Consists of 36 arrays in a 6x6 arrangement 16 ft between each array for access roads

Phase 2: Substation Design

Protection & Controls Drawing Hierarchy

Single Line Diagram

Substation Grounding

- Resistivity of soil
- 2. Calculate tolerable step and touch voltages
- Make sure that the maximum step and touch voltages are less than the tolerable ones

Testing and Evaluation Plan (Solar Power Plant)

National Renewable Energy Lab System Advisor Model (NREL SAM):

- Performance model that takes in solar power plant parameters
- Simulates the system
- Simulation input parameters:
 - Location (Based on Latitude and Longitude)
 - Types of Inverters and Solar Panels we are using
 - Types of rack system (Fixed or Variable Rack and also Tilt angle and Ground Coverage Ratio)
 - Number of inverters
 - Size of panels
 - Number of solar modules in one string
- Simulation output parameters
 - The number of panels (Check if it matches with our Array Parameter Tool)
 - Number of strings (Check if it matches with our Array Parameter Tool)
 - ILR (Check if it matches with our Array Parameter Tool)

Photovoltaic, Commercial	CEC Performance Model wit	h Module Database 🗸							
Location and Resource	Filter: Name	· ·							
Module	Name		Technology	Bifacial	STC	PTC	A_c	Length	Widt 个
	Hanwha Q CELLS Q.PRO L-G3.1 3		Multi-c-Si	0	320.130900	293.100000	1.994000	1.994	1
Inverter	Hanwha Q CELLS B.LINE PLUS L-C		Multi-c-Si	0	322.712000	298.700000	1.994000	1.994	1
	Hanwha Q CELLS B.LINE PRO L-G Hanwha Q CELLS B.LINE PLUS L-0		Multi-c-Si Multi-c-Si	0	322.712000 324.795000	298.700000 300.600000	1.994000 1.994000	1.994 1.994	1
System Design	Hanwha Q CELLS Q.PEAK DUO-G		Mono-c-Si	0	325.059000	300.700000	1.630000	1.554	
Charding, and Lawyout	Hanwha Q CELLS Q.PEAK DUO-G		Mono-c-Si	0	325.542000	300.700000	1.620000		
Shading and Layout	Hanwha Q CELLS Q.PLUS L-G4 32		Multi-c-Si	0	324.795000	297.400000	1.994000	1.994	1
Losses	Hanwha Q CELLS Q.PLUS L-G4.1	325	Multi-c-Si	0	324.795000	297.400000	1.994000	1.994	1 🗸
203363	<			-					>
Lifetime	Module Characteristics at Refer	ence Conditions							
Battery Storage	Reference conditions: 1	otal Irradiance = 1000 W/m2,	Cell temp = 25 C						
battery storage	Hanwha O CEL	LS Q.PLUS L-G4.1 325							
System Costs				Nominal e	efficiency 16.2	886 % Tempe	erature coefficients		
	Sc 8-			Maximum pow	rer (Pmp) 324.	795 Wdc	-0.410 %/°C	-1.33	2 W/°C
Financial Parameters	Module Current (Amps)			Max power voltag	ge (Vmp)	86.7 Vdc			
	ent			Max power curre	ent (Imp)	8.9 Adc			
Incentives	- CC			Open circuit volta		16.4 Vdc	-0.310	-0.14	4 V/°C
	Inle		\mathbf{X}			9.4 Adc	0.040 %/°C		4 A/°C
Electricity Rates	Woo			Short circuit cur	rent (ISC)	9.4 Adc	0.040 %/ C	0.00	4 A/ C
Electric Load	0			cial Specifications					
Electric Eodd	10	20 30 40		Module is bifacial					
	Modu	ile Voltage (Volts)	Tr	ansmission fraction	0.013 0	-1			
Simulate > 📃 🛃				Bifaciality	0.65 0	-1			
Parametrics Stochastic									
P50 / P90 Macros			Grou	nd clearance height	1 n	1			
Sizing		Sizing Summary	1						
Jizing		Sizing Summary							
Number of inverters	36	To	tal AC capac	ity 60.156	5.000 kWac	Tota	number of	modules	238,0
			PA 10 10 2010	-				_	
DC to AC ratio	1.29	Total inver	ter DC capac	city 61,051	I.301 kWdc	To	tal number c	f strings	12,5
							T 1 1		
e the system using module	and the second	Namenia	ate DC capac	1tv //311	1.609 kWdc		Total mod	lule area	474,635

Test Results & Evaluations

Testing and Evaluation Plan (Substation Design)

Compliance with NEC and IEEE codes:

- Checking design against the codes specified
- Calculating the conductor sizes and the voltage drop according the code.

Testing and Evaluation Plan (Solar Plant)

• Compliance with the following NEC codes:

NEC Code	Description	How to Check	Design Steps			
Article 300.50 and Table 300.50	Discusses acceptable depth to bury conductors	Using this information during to plan wiring	Design a plant layout that applies this information			
Article 310.10	Discusses the uses of conductors under different conditions	Ensure that we select the right conductors for our conditions	Choose wires that satisfy our conditions and implement them into the design			
Article 310.15 and table 310.15	Defines ampacities for different conductors	Using this information in the voltage drop calculations	Applying values from calculations into conductor sizing			
Section 310.120	Explains necessary markings for different conductors	Using this information to choose the right type of conductors	Choose wires with the right markings			

Testing and Evaluation Plan (Substation)

- Compliance with IEEE 80-2000 Equations and assumptions:
 - Assuming that the rod length is 20ft

Deliverables

Man Hour Budget: Fall 2018

					F/	ALL	20	18												
Weeks	1	2	3	4		Contraction of the	1000	1000	9	10	11	12	13	14	15	16	17		Key	
Meetings (Client and Advisor)																		Ov	errun	
Documentation											2							Pro	jected	
Solar Plant Size & Cost Determination																		B	reak	
Solar Plant Layout Drawings																		<mark>Billab</mark>	le Hour	s
Feeder & Collector Design																				
Conductor Sizing and Voltage Drop													-							
Key Protection Schematic																				
AC 1 and 2 Schematics																				
Review Deliverables																				
																		Sum	0	
Hours Estimation	0	3	15	30	60	<mark>60</mark>	60	60	60	60	35	35	24	0	15	15	2	534		
Hours Actual	0	3	14	46	78	90	58	94	64	88	84	39	15	0	14	6	6	699		
a contraction and the second																				

Man Hour Budget: Spring 2019

			_		SP	RINO	G 201	9									
Weeks	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	
Substation																	
Protection &																	
Controls Schematics							_			i.							
Layout Schematic																	
Design Review																	
Substation													¥				
Grounding																	
										1							
Project Review																	
Project Report																	
Presentation											~						
			0.1							1							s
Hours Estimation	30	30	30	30	30	30	25	25	25	0	25	15	15	15	10	0	3
Hours Actual	30	29	30	30	30	31	30	30	30	0	32	30	30	30	15	0	4
% of Budget	100	97	100	100	100	103	100	100	100	100	128	200	200	200	150	100	1

Cost of Project

Project Cost											
Components	Count	Cost (\$ million)									
Panels	238032	48.558528									
Combiner Boxes	792	1.01420352									
Inverters and Step-Up Transformers	36	1.956717									
Land (Acres)	243.1172708	0.195									
Substation	1	22									
	Total Cost	73.72444852									

Challenges Faced and Solutions

- Lack of solar parameter knowledge
 - Voltage Drop Calculations
 - MPP
- Protection and Controls design (AutoCAD)

- Client and advisor feedback
- Learned how to use AutoCAD

- Submitted all deliverables on time with satisfaction from client
- Learned a lot about solar power plant and substation design
- If implemented, project would decrease the grid's dependence on fossil fuels

Future Work

• Adoption of project

Conclusion & Lesson Learned

- Design process and documentation
- Importance of NEC and IEEE codes

Thank You For Listening!

Any Questions?

Work Cited

- 1. Irish Solar Energy Association. [Online]. Available: http://irishsolarenergy.org/solar-energy.
- 2. Power Xpert Solar 1500/1650 kW Inverters. [Online]. Available:

https://www.eaton.com/SEAsia/ProductsSolutions/Electrical/ProductsServices/PowerDistributionComponents/SolarSwitchesInverters/S1500_1650/index.

htm.

- 3. "Atonix Digital using predictive analytics to tackle Black & amp; Veatch first, then world," *Startland News*, 15-Feb-2019. [Online]. Available: https://www.startlandnews.com/2019/02/atonix-digital-black-veatch.
- 4. "Black & amp; Veatch," Black & amp; Veatch. [Online]. Available: https://www.bv.com/.
- 5. "Hanwha Q CELLS," Hanwha Q CELLS. [Online]. Available: https://www.hanwha-qcells.com/.
- Kronsbein, "Hungary's largest solar power plant is now operational," *Sun & amp; Wind Energy*, 23-Oct-2015. [Online]. Available: http://www.sunwindenergy.com/photovoltaics/hungarys-largest-solar-power-plant-now-operational.
- 7. SolarBOS, "Disconnect Combiners," SolarBOS, 01-Jan-1970. [Online]. Available: http://www.solarbos.com/Disconnect-Combiners.